Review 3, No Calculator

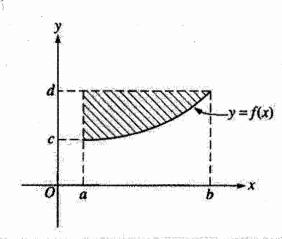
Complete all the following on notebook paper.

____1

If $f(x) = x^{\frac{3}{2}}$, then f'(4) =

- (A) -6
- (B) -3
- (C) 3
- (D) 6
- (E) 8

_____2



Which of the following represents the area of the shaded region in the figure above?

(A) $\int_{c}^{d} f(y) dy$

- (B) $\int_a^b (d-f(x))dx$
- (C) f'(b)-f'(a)

- (D) (b-a)[f(b)-f(a)]
- (E) (d-c)[f(b)-f(a)]

____3

 $\lim_{n \to \infty} \frac{3n^3 - 5n}{n^3 - 2n^2 + 1} \text{ is }$

- (A) -5
- (B) -2
- (C) 1
- (D) 3
- (E) nonexistent

____4

If the function f is continuous for all real numbers and if $f(x) = \frac{x^2 - 4}{x + 2}$ when $x \neq -2$, then f(-2) =

- (A) -4
- (B) -2
- (C) -1
- (D) 0
- (E) 2

If $x^3 + 3xy + 2y^3 = 17$, then in terms of x and y, $\frac{dy}{dx} =$

- (A) $-\frac{x^2+y}{x+2y^2}$
- (B) $-\frac{x^2+y}{x+y^2}$
- $(C) \quad -\frac{x^2+y}{x+2y}$
- (D) $-\frac{x^2+y}{2y^2}$
- (E) $\frac{-x^2}{1+2v^2}$

6.

The area of the region enclosed by the curve $y = \frac{1}{x-1}$, the x-axis, and the lines x = 3 and x = 4 is

- (B) $\ln \frac{2}{3}$ (C) $\ln \frac{4}{3}$ (D) $\ln \frac{3}{3}$
- (E) ln 6

An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1,5) is

(A)
$$13x - y = 8$$

(B)
$$13x + y = 18$$

(C)
$$x-13y=64$$

(D)
$$x+13y=66$$

(B)
$$13x + y = 18$$

(E) $-2x + 3y = 13$

If $y = \tan x - \cot x$, then $\frac{dy}{dx} =$

(A) $\sec x \csc x$ (B) $\sec x - \csc x$ (C) $\sec x + \csc x$ (D) $\sec^2 x - \csc^2 x$ (E) $\sec^2 x + \csc^2 x$

If h is the function given by h(x) = f(g(x)), where $f(x) = 3x^2 - 1$ and g(x) = |x|, then h(x) = 1

(B) $|3x^2-1|$

(C) $3x^2|x|-1$ (D) 3|x|-1

If $f(x) = (x-1)^2 \sin x$, then f'(0) =

(A) -2

(C) 0

11. 2001—AB5

A cubic polynomial function f is defined by

$$f(x) = 4x^3 + ax^2 + bx + k$$

where a, b, and k are constants. The function f has a local minimum at x = -1, and the graph of f has a point of inflection at x = -2.

- (a) Find the values of a and b.
- (b) If $\int_0^1 f(x) dx = 32$, what is the value of k?

12. 2001-AB6

The function f is differentiable for all real numbers. The point $(3, \frac{1}{4})$ is on the graph of y = f(x), and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2(6 - 2x)$.

- (a) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.
- (b) Find y = f(x) by solving the differential equation $\frac{dy}{dx} = y^2(6 2x)$ with the initial condition $f(3) = \frac{1}{4}$.

Eaview 3 Sountions

1.
$$f(u) = \frac{x^3}{2}$$
 $f'(u) = \frac{3}{2}(u)^{\frac{1}{12}} = 3$
 $f'(u) = \frac{3}{2}(u)^{\frac{1}{12}} = \frac{3}{2}$
 $f'(u) = \frac{3}{2}(u)^{\frac{1}{12}} = \frac{3}{2}(u)^{\frac{1}{12}$

AP® CALCULUS AB 2001 SCORING GUIDELINES

Question 5

A cubic polynomial function f is defined by

$$f(x) = 4x^3 + ax^2 + bx + k$$

where a, b, and k are constants. The function f has a local minimum at x = -1, and the graph of f has a point of inflection at x = -2.

- (a) Find the values of a and b.
- (b) If $\int_0^1 f(x) dx = 32$, what is the value of k?

(a)
$$f'(x) = 12x^2 + 2ax + b$$

 $f''(x) = 24x + 2a$

$$f'(-1) = 12 - 2a + b = 0$$
$$f''(-2) = -48 + 2a = 0$$

$$a = 24$$
$$b = -12 + 2a = 36$$

$$5: \begin{cases} 1: f'(x) \\ 1: f''(x) \\ 1: f'(-1) = 0 \\ 1: f''(-2) = 0 \\ 1: a, b \end{cases}$$

(b)
$$\int_0^1 (4x^3 + 24x^2 + 36x + k) dx$$
$$= x^4 + 8x^3 + 18x^2 + kx \Big|_{x=0}^{x=1} = 27 + k$$

$$27 + k = 32$$
$$k = 5$$

$$4: \left\{ egin{array}{ll} 2: ext{antidifferentiation} \\ &<-1> ext{each error} \\ 1: ext{expression in } k \\ 1: k \end{array}
ight.$$

AP® CALCULUS AB 2001 SCORING GUIDELINES

Question 6

The function f is differentiable for all real numbers. The point $\left(3,\frac{1}{4}\right)$ is on the graph of y=f(x), and the slope at each point (x,y) on the graph is given by $\frac{dy}{dx}=y^2\left(6-2x\right)$.

- (a) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3,\frac{1}{4}\right)$.
- (b) Find y = f(x) by solving the differential equation $\frac{dy}{dx} = y^2 (6 2x)$ with the initial condition $f(3) = \frac{1}{4}$.

(a)
$$\frac{d^2y}{dx^2} = 2y\frac{dy}{dx}(6-2x) - 2y^2$$
$$= 2y^3(6-2x)^2 - 2y^2$$
$$\frac{d^2y}{dx^2}\Big|_{\left(3,\frac{1}{4}\right)} = 0 - 2\left(\frac{1}{4}\right)^2 = -\frac{1}{8}$$

$$3: \left\{ egin{array}{ll} 2: rac{d^2y}{dx^2} & <-2> ext{product rule or} \ & ext{chain rule error} \ 1: ext{value at} \left(3,rac{1}{4}
ight) \end{array}
ight.$$

(b)
$$\frac{1}{y^2}dy = (6-2x)dx$$
$$-\frac{1}{y} = 6x - x^2 + C$$
$$-4 = 18 - 9 + C = 9 + C$$
$$C = -13$$
$$y = \frac{1}{x^2 - 6x + 13}$$

$$6: \begin{cases} 1: \text{ separates variables} \\ 1: \text{ antiderivative of } dy \text{ term} \\ 1: \text{ antiderivative of } dx \text{ term} \\ 1: \text{ constant of integration} \\ 1: \text{ uses initial condition } f(3) = \frac{1}{4} \\ 1: \text{ solves for } y \end{cases}$$

Note: max 3/6 [1-1-1-0-0-0] if no constant of integration

Note: 0/6 if no separation of variables